Chem. Ber. 113, 3815 - 3820 (1980)

Kovalente Verbindungen des Tetraschwefelpentanitrids

Herbert W. Roesky*, Cornelia Graf und M. N. Sudheendra Rao

Anorganisch-Chemisches Institut der Universität Frankfurt/M., Niederurseler Hang, D-6000 Frankfurt/M. 50

Eingegangen am 17. März 1980

Die Umsetzung von S_4N_5Cl (1) mit silylierten Sulfodiimiden oder einem substituierten Harnstoff im Molverhältnis 1:1 führt zu den Substitutionsprodukten 2a-e. Die Reaktion zu 2a wurde unter verschiedenen Reaktionsbedingungen studiert. Im Molverhältnis 2:1 erhält man die äußerst explosiven Verbindungen 3a und b mit zwei S_4N_5 -Käfigen, die über eine Sulfodiimidgruppe verbrückt sind.

Covalent Compounds of Tetrasulfur Pentanitride

The reaction of S_4N_5Cl (1) with silylated sulfodiimides or a substituted urea in a molar ratio of 1:1 leads to covalent derivatives 2a - e. The reaction of 2a has been studied under different conditions. In a molar ratio of 2:1, 3a and b were obtained, extremely explosive compounds with two S_4N_5 cages bridged by a sulfodiimide group.

Salze des $S_4N_5^+$ -Kations oder $S_4N_5^-$ -Anions sind von *Chivers* et al. ^{1,2)} und *Scherer* et al. ^{3,4)} beschrieben worden. Wir beobachteten, daß die Reaktion von *S,S*-Dimethyl-N,N'-bis(trimethylsilyl)sulfodiimid mit Trithiazyltrichlorid, $S_3N_3Cl_3$, als Nebenprodukt ein kovalent substituiertes Tetraschwefeltetranitrid-imid liefert ⁵⁾. Dies veranlaßte uns, nichtionische Verbindungen mit dem S_4N_5 -Bicyclus gezielt darzustellen und durch Silylgruppenwanderung zu neuartigen Schwefel-Stickstoff-Heterocyclen zu gelangen.

Synthese

Als Ausgangsverbindung diente S_4N_5Cl (1), hergestellt aus $S_3N_3Cl_3$ und Bis(trimethylsilyl)sulfodiimid²⁾. Die Ausbeute an 1 kann bis auf 85% gesteigert werden, wenn das Bis(trimethylsilyl)sulfodiimid bei 0°C zugetropft und die resultierende Lösung 20 h bei Raumtemperatur gerührt wird.

1 reagiert mit silylierten Sulfodiimiden oder einem silylierten Harnstoff im Molverhältnis 1:1 zu den S_4N_5 -Derivaten 2.

Während 2a durch Umkristallisieren aus CH_2Cl_2 gereinigt werden kann, zersetzen sich 2b-e in herkömmlichen Lösungsmitteln weitgehend. Eine merkliche Abhängigkeit der Stabilität von der Größe des Cycloalkanringes konnte beobachtet werden. Am instabilsten erwies sich innerhalb dieser Serie das Thiacyclobutan-Derivat (2b). Es zersetzt sich im geschlossenen Kolben bereits nach wenigen Tagen.

Der Reaktionsablauf ist außerordentlich abhängig von den Bedingungen. Dies wurde experimentell am Beispiel 2a nachgewiesen. So kann man 2a mit über 80% Ausbeute

© Verlag Chemie, GmbH, D-6940 Weinheim, 1980 0009 - 2940/80/1212 - 3815 \$ 02.50/0

isolieren, wenn die Reaktion in Acetonitril und bei $0\,^{\circ}$ C durchgeführt wird. In CH_2Cl_2 als Lösungsmittel und vor allen Dingen bei längeren Reaktionszeiten entstehen außerdem S_4N_4 , $S_5N_6(CH_3)_2$ und in geringer Ausbeute eine Verbindung (3a) mit zwei S_4N_5 -Bicyclen. In höheren Ausbeuten erhält man 3a, b, wenn die Edukte im Molverhältnis 2:1 eingesetzt werden.

2 1 +
$$(CH_3)_3 SI - X - SI(CH_3)_3$$
 \rightarrow $N S S - X - S S N + 2(CH_3)_3 SIC 3a,b$

3a und b sind äußerst explosiv und in gängigen protonenfreien Lösungsmitteln weitgehend unlöslich. Eine Verbrennungsanalyse gelang nur einmal, in allen anderen Fällen wurde die Apparatur zertrümmert.

Reaktionen

Aufgrund einer Röntgenstrukturanalyse⁶⁾ an Einkristallen von 2a, gewonnen aus der Umsetzung mit Trithiazyltrichlorid, war uns bekannt, daß von den zwei wahrscheinlichen Isomeren 2a und 2a' lediglich 2a entsteht. Das ursprünglich angegebene Isomere 2a', mit Schwefelatomen der Koordinationszahl 2, 3 und 4, wurde auch hier nicht gefunden⁵⁾.

Aus der Struktur von 2a geht hervor, daß innerhalb des S_4N_5 -Gerüstes nur ein Schwefelatom zweifach koordiniert ist. Versuche, dieses Atom bei tiefen Temperaturen zu chlorieren und dann unter Chlortrimethylsilan-Abspaltung zu einem tricyclischen Derivat zu gelangen, waren nicht erfolgreich. Es entsteht dabei die bereits bekannte bicyclische Verbindung 4^{5}).

Als Folgeprodukt von $(N_2S)_x$ konnte lediglich S_4N_4 nachgewiesen werden. Die leichte Eliminierung von N_2S aus 2b-e, die bei Schwefel-Stickstoff-Heterocyclen nicht der Regelfall ist, kommt auch in den Massenspektren zum Ausdruck. Man findet als Fragment höchster Masse hier stets $M-N_2S$.

In den ${}^{1}H$ -NMR-Spektren von 2b-e in Methylenchlorid treten nach einigen Stunden im Bereich der Silylgruppen mehrere Signale auf. Aufgrund der obigen Beobachtungen

nehmen wir auch hier zunächst unter Wanderung der Trimethylsilylgruppe eine Gerüstumlagerung an mit nachfolgender Zersetzung zu ölartigen roten Produkten.

Ein Vergleich der IR-Spektren in Tab. 1 macht deutlich, daß in allen synthetisierten Verbindungen sofort nach der Herstellung der bicyclische S₄N₅-Heterocyclus erhalten geblieben ist. Die schnelle Zersetzung von **2b** ist durch das Auftreten von breiten Absorptionsbanden gekennzeichnet, wenn die Spektren nach kurzer Zeit wiederholt aufgenommen werden.

Unser Dank gilt der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und der Hoechst AG für die gewährte großzügige Unterstützung. M.N.S.R. dankt der Alexandervon-Humboldt-Stiftung für ein Stipendium.

Experimenteller Teil

Eingesetzte Geräte und allgemeine Versuchsbedingungen sind unter Lit.5) zitiert.

 $1\lambda^4, 3\lambda^4, 5\lambda^4, 7\lambda^4$ -Tetrathia-2,4,6,8,9-pentaazabicyclo[3.3.1]nona-1,3,5(9),6,7-pentaenium-chlorid = Tetraschwefelpentanitridchlorid²) (1) erhält man in 85proz. Ausb., wenn man das $(CH_3)_3$ SiNSNSi $(CH_3)_3$ mit 50 ml CCl_4 verdünnt und bei 0°C zutropfen läßt. Anschließend wird 20 h bei Raumtemp. gerührt.

3-{[Dimethyl(trimethylsilylimino)sulfuranyliden]amino}- $1\lambda^4$, $3\lambda^4$, $5\lambda^4$, $7\lambda^4$ -tetrathia-2, 4, 6, 8, 9-pentaazabicyclo[3.3.1]nona-1, 3, 5(9), 6, 7-pentaen (2a)

- a) Zur Lösung von 0.75 g (3.1 mmol) $[(CH_3)_3SiN]_2S(CH_3)_2$ in 40 ml Acetonitril gibt man bei 0°C tropfenweise innerhalb von 2 h unter Rühren 0.72 g (3.1 mmol) 1, gelöst in 60 ml Acetonitril. Nach der Zugabe wird die Lösung auf Raumtemp. gebracht und unmittelbar danach filtriert. Der Niederschlag enthält 2a und 3a. Durch portionsweise Extraktion mit CH_2Cl_2 geht 2a in Lösung. Zurück bleiben 70 mg 3a. Beim Einengen i. Vak. und Kühlen der Extraktionslösung erhält man 0.75 g (70%) 2a. Aus dem Filtrat lassen sich weitere 0.15 g (14%) 2a und 50 mg 3a gewinnen, wenn man die Lösung für längere Zeit mehrmals auf -20°C abkühlt und die Niederschläge durch Filtrieren entfernt.
- b) Zur Lösung von 1.43 g (6.1 mmol) 1 in 80 ml CH₂Cl₂ wird bei 0°C unter Rühren in 2 h eine Lösung von 1.45 g (6.1 mmol) [(CH₃)₃SiN]₂S(CH₃)₂ in 20 ml CH₂Cl₂ getropft. Anschließend erwärmt man auf Raumtemp. und rührt weitere 16 h. Aufgearbeitet wird wie unter a) beschrieben durch Extraktion mit CH₂Cl₂. Ausb. 0.65 g (30%) 2a und 0.55 g 3a.
- c) Zu einer auf 0 °C gekühlten Lösung von 1.14 g (4.8 mmol) 1 in 200 ml CH_2Cl_2 gibt man 1.2 g (5.0 mmol) [(CH_3)₃SiN]₂S(CH_3)₂, gelöst in 25 ml CH_2Cl_2 . Nachdem die Lösung auf Raumtemp. gebracht worden ist, rührt man 40 h. Aus der orangefarbenen Lösung ist kein Feststoff ausgefallen. Erst wenn man die Lösung stark einengt und auf -20 °C kühlt, erhält man 0.15 g $S_5N_6(CH_3)_2$. Die Verbindung ist identisch mit einer Probe, die nach Lit. 5) hergestellt wurde. S_4N_4 und geringe Mengen 2a sind weitere Reaktionsprodukte.

In den physikalischen Eigenschaften ist 2a identisch mit dem Präparat nach Lit⁶).

Allgemeine Arbeitsvorschrift zur Darstellung von $2\,b-e$: Man kühlt die Lösung von $5.0\,$ mmol silyliertem Sulfodiimid in $150\,$ ml Acetonitril auf $-45\,$ °C und gibt unter Rühren innerhalb von $2\,$ h $5.0\,$ mmol $1\,$ in Substanz hinzu. Nach der Zugabe wird während $1\,$ h auf $10\,$ °C erwärmt. Die Feststoffe werden abfiltriert und die Lösung wird i. Vak. eingeengt, bis die Reaktionsprodukte auszufallen beginnen. Man kühlt die Lösung auf $-40\,$ °C. Der gebildete Niederschlag wird abfiltriert und nacheinander mit $5\,$ ml Methylenchlorid, $5\,$ ml Acetonitril und portionsweise mit $40\,$ ml Petrolether gewaschen und i. Vak. getrocknet. Durch sofortiges Aufarbeitung der Mutterlauge können ca. weitere 20% an Produkt erhalten werden.

 $3-\{[1-(Trimethylsilylimino)-1\lambda^6-thiacylobutyliden]amino\}-1\lambda^4,3\lambda^4,5\lambda^4,7\lambda^4-tetrathia-2,4,-6,8,9-pentaazabicyclo[3.3.1]nona-1,3,5(9),6,7-pentaen (2b): Ausb. 1.5 g (81%). Zers.-P. 48-62 °C. - MS: <math>m/e$ (70 eV) = 313 (M - N₂S, 2%), 300 (M - SiMe₃, 3), 46 (NS, 100). - 1 H-NMR (CH₂Cl₂): δ = 0.51 (SiMe₃), 2.57, 4.41, 4.63.

```
C<sub>6</sub>H<sub>15</sub>N<sub>7</sub>S<sub>5</sub>Si (373.6) Ber. C 19.29 H 4.05 N 26.24 S 42.90
Gef. C 19.6 H 4.3 N 26.0 S 42.2
```

 $3-\{[1-(Trimethylsilylimino)-1\lambda^6-thiacyclopentyliden]amino\}-1\lambda^4,3\lambda^4,5\lambda^4,7\lambda^4-tetrathia-2,4,6,8,9-pentaazabicyclo[3.3.1]nona-1,3,5(9),6,7-pentaen (2c): Ausb. 1.7 g (88%), Zers.-P. 92-102°C. - MS: <math>m/e=327$ (M - H₂S, 1%), 249 (M - S₃N₃, 9), 46 (NS, 100). - ¹H-NMR (CH₂Cl₂): $\delta=0.50$ (SiMe₃), 2.52, 3.33, 3.78.

```
C_7H_{17}N_7S_5Si (387.7) Ber. C 21.69 H 4.42 N 25.29 S 41.31 Gef. C 21.2 H 4.4 N 25.3 S 40.4
```

3- $\{[I-(Trimethylsilylimino)-1\lambda^6-thiacyclohexyliden]amino\}-1\lambda^4,3\lambda^4,5\lambda^4,7\lambda^4-tetrathia-2,4,6,8,9-pentaazabicyclo[3.3.1]nona-1,3,5(9),6,7-pentaen (2d): Ausb. 1.9 g (94%), Zers.-P. 92-102°C. - MS: <math>m/e=341$ (M - N₂S, 2%), 277 (M - S₃N₂, 2), 73 (SiMe₃, 100). - 1 H-NMR (CH₂Cl₂): $\delta=0.50$ (SiMe₃), 1.97, 2.37, 3.42.

```
C<sub>8</sub>H<sub>19</sub>N<sub>7</sub>S<sub>5</sub>Si (401.7) Ber. C 23.92 H 4.70 N 24.40 S 39.90
Gef. C 24.0 H 4.3 N 24.53 S 39.3
```

N,N'-Dimethyl-N- $(1\lambda^4,3\lambda^4,5\lambda^4,7\lambda^4$ -tetrathia-2,4,6,8,9-pentaazabicyclo[3.3.1]nona-1,3,5(9),6,7-pentaan-3-yl)-N'-(trimethylsilyl)harnstoff (2e) fällt nach der Reaktion weitgehend aus. Ausb.

1.7 g (95%), Zers.-P. 75 – 86°C. – MS: m/e = 297 (M – N₂S, 2%), 224 (M – NSNSiMe₃, 22), 73 (SiMe₃, 100). – ¹H-NMR (CH₂Cl₂): $\delta = 0.61$ (SiMe₃), 2.81, 3.41.

C₆H₁₅N₇OS₄Si (357.6) Ber. C 20.15 H 4.23 N 27.4 S 35.87 Gef. C 19.7 H 4.4 N 27.2 S 36.4

Tab. 1. IR-Daten von S₄N₅-Verbindungen (Nujol) *)

1	2 a	2 b	2 c	2 d	2 e	3 a	3 b
		665 st	670 m	670 m	660 m		675 sh
	692 s	685 s				680 st	695 st
710 st	708 s	700 m	700 m	700 m	700 m	708 st	705 sh
730 s	727 s	720 s	725 ss	710 s	720 s	727 s	720 m
_	742 s	740 m	740 sh	725 m	735 ss	742 sh	735 m
_	760 sh	760 st	760 st	745 st	770 m	764 s	_
_	772 m	_	_	765 st	_	_	_
810 s	_	800 s	_	_	800 s	_	800 ss
	858 sst	850 sst	850 sst	840 sst	850 sst	855 sh	860 st
_	880 s	870 s	870 s	850 sh	875 s	880 st	-
_	_	905 sst	900 sst	905 sst	910 s	_	915 ss
_	922 st	930 st	935 s	940 s	940 sst	948 sst	965 ss
_	942 sh	945 sh	_	_	-	_	_
_	950 m	965 st	970 st	970 st	_	980 st	_
985 sst	980 st	_	_	980 st	995 st	-	_
_	1022 m	1010 st	1015 s	1005 s	1010 ss	_	1000 m
1030 m	1030 sh		_	1015 s	1030 sh	1032 st	1030 sh
1065 st	1075 m	1060 st	1065 sh	1050 sh	1045 sst	1052 st	1045 ss
-	_	_	_	1055 st	_	1062 st	_
_	_	_	_	1080 m	1080 m	_	_
_	_	1100 sh	1130 s	1100 s	1110 s	_	1100 m
1150 s	_	_	_	1150 s	1165 st	_	1125 s
_	_	1180 ss	1170 s				
_	_	1205 m	_	1210 s	1205 s	_	_
_	_	_	_	1230 sst		_	_
_	1258 sst	1250 st	1250 st	1250 sst	1250 st	-	_
			1265 sh	1260 sst	1260 sh	_	1265 s
_	1277 sst	1 29 5 sh	1295 m	1290 sh	-	-	_
_	1320 s	1310 st	1315 s	1320 s	_	1319 s	1305 ss
_	1340 s	_	_	1350 ss	1345 sst	_	_
_	_	1395 s	_	_	_	_	-
_	1400 s	1405 sh	1405 s	1410 s	1415 s	1410 s	1400 s
_	1415 ss	_	_	1435 s	1440 m	_	1410 sł
-	1430 ss	1450 s	1445 s	1450 s	1465 s	_	-
_	_	-	-	_	1475 s	_	_
_	-	-	_	_	1575 s	-	_
					1620 sst		

^{*)} Im Bereich um 1400 cm⁻¹ werden die IR-Spektren in CCl₄ aufgenommen.

S,S-Dimethyl-N,N'-bis($1\lambda^4$, $3\lambda^4$, $5\lambda^4$, $7\lambda^4$ -tetrathia-2,4,6,8,9-pentaazabicyclo[3.3.1]nona-1,3,5(9),6,7-pentaen-3-yljsulfodiimid (3a): Zu einer Lösung von 1.0 g (4.3 mmol) 1 in 150 ml Acetonitril tropft man bei Raumtemp. unter Rühren in 1.5 h eine Lösung von 0.50 g (2.1 mmol) [(CH₃)₃SiN]₂S(CH₃)₂ in 25 ml Acetonitril. 3a wird durch Filtrieren gewonnen. Ausb. 400 mg. Im

Filtrat findet man $S_5N_6(CH_3)_2$ und S_4N_4 . Vorsicht! 3a ist äußerst explosiv. – MS: m/e = 198 (S_4N_5 , 2%), 46 (NS, 100).

C₂H₆N₁₂S₉ (492.6) Ber. S 58.58 Gef. S 57.8

1,1-Bis($1\lambda^4,3\lambda^4,5\lambda^4,7\lambda^4$ -tetrathia-2,4,6,8,9-pentaazabicyclo[3.3.1]nona-1,3,5(9),6,7-pentaen-3-ylimino)- $1\lambda^6$ -thiacyclobutan (3b): Zu einer Suspension von 1.4 g (6.0 mmol) 1 in 50 ml Acetonitril wird bei -10 °C die Lösung von 0.78 g (3.0 mmol) [(CH₃)₃SiN]₂S(CH₂)₄ in 30 ml Acetonitril getropft. Es wird langsam auf Raumtemp. erwärmt und 15 h gerührt. Der gelbe Niederschlag wird abfiltriert, mit 10 ml Acetonitril und 20 ml Methylenchlorid gewaschen und anschließend i. Vak. getrocknet. Vorsicht! 3b kann beim Trocknen oder Entfernen aus der Fritte explosiv zerfallen. Ausb. 0.97 g (64%). - MS: m/e = 198 (S₄N₅, 6%), 46 (NS, 100).

Reaktion von 2a mit Chlor: In die Lösung von 0.50 mmol 2a in 50 ml Methylenchlorid leitet man bei $-60\,^{\circ}$ C unter Rühren die äquivalente Menge Chlorgas ein. Anschließend erwärmt man langsam auf Raumtemp. Der Niederschlag ist 3,3-Dimethyl-1 λ^3 -thionia-3 λ^6 ,5 λ^4 ,7 λ^4 -trithia-2,4,6,8,9-pentaazabicyclo[3.3.1]nona-2,3,5(9)6,7-pentaen-chlorid, wie ein Vergleich der IR-Spektren eines Präparates nach Lit.5) zeigt.

Literatur

- 1) T. Chivers und L. Fielding, J. Chem. Soc., Chem. Commun. 1978, 212.
- 2) T. Chivers, L. Fielding, W. G. Laidlaw und M. Trsic, Inorg. Chem. 18, 3379 (1979).
- 3) O. J. Scherer und G. Wolmershäuser, Chem. Ber. 110, 3241 (1977).
- 4) W. Flues, O. J. Scherer, J. Weiss und G. Wolmershäuser, Angew. Chem. 88, 411 (1976); Angew. Chem., Int. Ed. Engl. 15, 379 (1976).
- ⁵⁾ H. W. Roesky, M. N. S. Rao, T. Nakajima und W. S. Sheldrick, Chem. Ber. 112, 3531 (1979).
- 6) W. S. Sheldrick, M. N. S. Rao und H. W. Roesky, Inorg. Chem., i. Druck.

[85/80]